We present at:
Laser World of Photonics
June 26 - 29, 2017

Hall B1 Booth 611


See you at the booth!


Research projects:

Research in cooperation with research institutes as well as independent further development are an important basis for permanent optimisation and  adjustment of our coating machines.

The  participation of Cutting Edge Coatings GmbH to following procects  shows  exemplarily the research area of our company.


Control of spectral layer properties by optical broad-band spectral analysis in industrial ion beam sputtering processes. The research project is a part of the joint research network „Optical control of highly precise concepts for ion beam sputtering” (OptiKontrol) formed by two German and two Russian research partners.

It was the task for Cutting Edge Coatings to investigate in a novel method for broad-band optical transmittance and reflectance measurements. This method shall provide in-situ information on optical parameters of growing dielectric layers in industrial ion beam sputtering coating processes. Based on an extensive analysis on parametrizing the evaluation and control algorithms, the measurement system was successfully implemented in the control infrastructure of an industrial IBS-coating system. The performance of this measurement system has been evaluated for demanding optical filters. The coating process accompanying characterization of layer properties for monitoring sensitive fabrication tolerances has been successfully demonstrated.

Presentation of results: 14.-16. March 2017 in Zeulenroda/Thüringen, Germany

„12. Thementage Grenz- und Oberflächentechnik und 5. Kolloquium Dünne Schichten in der Optik“


The goal of this project is to develop a compact laser source capable of emitting >60 mW of continuous-wave radiation at 355 nm and with a total power consumption of less than 100W. The laser source will be used in analytical instrumentation technologies in life science and advanced measurement.

An extraction grid design for RF-driven ion sources with collinear grid hole arrangement was elaborated for mitigate contamination in the thin film deposition process. An assistance ion source with optimized extraction was delivered to project partner LZH. A simulation software based on physical model algorithms was developed to investigate in contamination effects of different grid hole geometries.

The development of a collinear grid hole arrangement has been come out as a complete success regarding the initial expectations. By implementing the new developed ion extraction grid system, it was possible to suppress contamination in deposition process below the relevant limit of detection. A demonstration grid system has been integrated into the deliverable to LZH and evaluated concerning the overall performance and its contamination tendency. The project partners confirmed the successful implementation of the optimized system in their production environment. Furthermore, the computer simulation of different hole geometries was successful although the time expenditure was underestimated so that only selected geometries were investigated in simulation.

More information about project






Updated: April 24, 2017